7월, 2018의 게시물 표시

장거리 운전을위한 플루오르 화 전해액으로 증발 된 전기 자동차 배터리. Posted by batterymanufactory.com

이미지
The success of electric car batteries depends on the miles that can be driven on a single charge, but the current crop of lithium-ion batteries are reaching their natural limit of how much charge can be packed into any given space, keeping drivers on a short tether. Now, researchers at the University of Maryland (UMD), the U.S. Army Research Laboratory (ARL), and Argonne National Laboratory (ANL) have figured out how to increase a rechargeable battery's capacity by using aggressive electrodes and then stabilizing these potentially dangerous electrode materials with a highly-fluorinated electrolyte. A peer-reviewed paper based on the research was published July 16 in the journal Nature Nanotechnology. "We have created a fluorine-based electrolyte to enable a lithium-metal anode, which is known to be notoriously unstable, and demonstrated a battery that lasts up to a thousand cycles with high capacity," said co-first authors Xiulin Fan and Long Chen, po

더 나은 건전지 : 소금은 중요합니다 성분. Posted by batterymanufactory.com

이미지
A new design of rechargeable battery , created using salt, could lead the way for greener energy. Researchers at the University of Nottingham Ningbo China (UNNC) have joined forces with a specialist group at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences on designs for the novel energy store which allows for greater power while also lasting longer than conventional batteries. Growing demand for electric vehicles and more sustainable forms of transport means finding new forms of energy storage such as batteries, super-capacitators and fuel cells. Currently a major challenge facing the industry is the poor performance quality of rechargeable batteries which often lose energy and power too quickly over time. The collaboration team is led by Professor Jiangiang Wang, an expert in molten salts chemistry at SINAP, and Professor George Chen, Li Dak Sum Chair Professor in Electrochemical Technologies at UNNC, and has worked to design a po

리튬 이온 배터리의 성능을 향상시키는 BNA. Posted by batterymanufactory.com

이미지
Recent research published in a paper in NANO by a group of researchers from Northeastern University investigate the effect of hierarchical Bi2MoO6 nanosheet arrays growing on three-dimensional Ni foam synthesized by one-step template-free route. The obtained BNAs used directly as binder-free integrated electrode for Li-ion batteries (LIBs) exhibits a super high reversible discharge capacity of 2311.7 μAh/cm2, and an excellent cycle stability. With the rapid development of modern technology, a variety of portable electronic products have become the requirement of time. Li-ion batteries (LIBs) are the optimum selection by virtue of long cycle-life and high energy density properties. Meanwhile, LIBs are viewed as one of the most promising technology in various fields including the defense industry, space technology, electric vehicles and other fields. Nowadays, commercial LIBs mainly use graphite as the anode material. However, graphite can hardly provide the high ca